3.2.58 \(\int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx\) [158]

3.2.58.1 Optimal result
3.2.58.2 Mathematica [A] (warning: unable to verify)
3.2.58.3 Rubi [A] (verified)
3.2.58.4 Maple [B] (warning: unable to verify)
3.2.58.5 Fricas [A] (verification not implemented)
3.2.58.6 Sympy [F]
3.2.58.7 Maxima [F(-1)]
3.2.58.8 Giac [F]
3.2.58.9 Mupad [F(-1)]

3.2.58.1 Optimal result

Integrand size = 27, antiderivative size = 229 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {a^{5/2} \left (c^2-3 c d-2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{c^2 \sqrt {d} (c+d)^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {a^2 (c-d) \tan (e+f x)}{c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))} \]

output
a^2*(c-d)*tan(f*x+e)/c/(c+d)/f/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2)+2*a 
^(5/2)*arctanh((a-a*sec(f*x+e))^(1/2)/a^(1/2))*tan(f*x+e)/c^2/f/(a-a*sec(f 
*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)+a^(5/2)*(c^2-3*c*d-2*d^2)*arctanh(d^(1 
/2)*(a-a*sec(f*x+e))^(1/2)/a^(1/2)/(c+d)^(1/2))*tan(f*x+e)/c^2/(c+d)^(3/2) 
/f/d^(1/2)/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)
 
3.2.58.2 Mathematica [A] (warning: unable to verify)

Time = 4.74 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.28 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\frac {(d+c \cos (e+f x))^2 \sec ^3\left (\frac {1}{2} (e+f x)\right ) \sqrt {\sec (e+f x)} (a (1+\sec (e+f x)))^{3/2} \left (\frac {\left (2 \sqrt {d} (c+d)^{3/2} \arctan \left (\frac {\tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )+\left (c^2-3 c d-2 d^2\right ) \arctan \left (\frac {\sqrt {d} \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d} \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )\right ) \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}} \sec \left (\frac {1}{2} (e+f x)\right ) \sqrt {1+\sec (e+f x)}}{\sqrt {d} (c+d)^{3/2} \sqrt {\frac {1}{1+\cos (e+f x)}}}+\frac {2 c (c-d) \sqrt {\sec (e+f x)} \sin \left (\frac {1}{2} (e+f x)\right )}{(c+d) (c+d \sec (e+f x))}\right )}{4 c^2 f (c+d \sec (e+f x))^2} \]

input
Integrate[(a + a*Sec[e + f*x])^(3/2)/(c + d*Sec[e + f*x])^2,x]
 
output
((d + c*Cos[e + f*x])^2*Sec[(e + f*x)/2]^3*Sqrt[Sec[e + f*x]]*(a*(1 + Sec[ 
e + f*x]))^(3/2)*(((2*Sqrt[d]*(c + d)^(3/2)*ArcTan[Tan[(e + f*x)/2]/Sqrt[C 
os[e + f*x]/(1 + Cos[e + f*x])]] + (c^2 - 3*c*d - 2*d^2)*ArcTan[(Sqrt[d]*T 
an[(e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])])])*Sqr 
t[Cos[e + f*x]/(1 + Cos[e + f*x])]*Sec[(e + f*x)/2]*Sqrt[1 + Sec[e + f*x]] 
)/(Sqrt[d]*(c + d)^(3/2)*Sqrt[(1 + Cos[e + f*x])^(-1)]) + (2*c*(c - d)*Sqr 
t[Sec[e + f*x]]*Sin[(e + f*x)/2])/((c + d)*(c + d*Sec[e + f*x]))))/(4*c^2* 
f*(c + d*Sec[e + f*x])^2)
 
3.2.58.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.90, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4428, 27, 168, 27, 174, 73, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (e+f x)+a)^{3/2}}{(c+d \sec (e+f x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\left (c+d \csc \left (e+f x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4428

\(\displaystyle -\frac {a^2 \tan (e+f x) \int \frac {a \cos (e+f x) (\sec (e+f x)+1)}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))^2}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a^3 \tan (e+f x) \int \frac {\cos (e+f x) (\sec (e+f x)+1)}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))^2}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 168

\(\displaystyle -\frac {a^3 \tan (e+f x) \left (\frac {\int \frac {a \cos (e+f x) (2 (c+d)+(c-d) \sec (e+f x))}{2 \sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))}d\sec (e+f x)}{a c (c+d)}-\frac {(c-d) \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a^3 \tan (e+f x) \left (\frac {\int \frac {\cos (e+f x) (2 (c+d)+(c-d) \sec (e+f x))}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))}d\sec (e+f x)}{2 c (c+d)}-\frac {(c-d) \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a^3 \tan (e+f x) \left (\frac {\frac {\left (c^2-3 c d-2 d^2\right ) \int \frac {1}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))}d\sec (e+f x)}{c}+\frac {2 (c+d) \int \frac {\cos (e+f x)}{\sqrt {a-a \sec (e+f x)}}d\sec (e+f x)}{c}}{2 c (c+d)}-\frac {(c-d) \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a^3 \tan (e+f x) \left (\frac {-\frac {2 \left (c^2-3 c d-2 d^2\right ) \int \frac {1}{c+d-\frac {d (a-a \sec (e+f x))}{a}}d\sqrt {a-a \sec (e+f x)}}{a c}-\frac {4 (c+d) \int \frac {1}{1-\frac {a-a \sec (e+f x)}{a}}d\sqrt {a-a \sec (e+f x)}}{a c}}{2 c (c+d)}-\frac {(c-d) \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a^3 \tan (e+f x) \left (\frac {-\frac {2 \left (c^2-3 c d-2 d^2\right ) \int \frac {1}{c+d-\frac {d (a-a \sec (e+f x))}{a}}d\sqrt {a-a \sec (e+f x)}}{a c}-\frac {4 (c+d) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} c}}{2 c (c+d)}-\frac {(c-d) \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a^3 \tan (e+f x) \left (\frac {-\frac {2 \left (c^2-3 c d-2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{\sqrt {a} c \sqrt {d} \sqrt {c+d}}-\frac {4 (c+d) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} c}}{2 c (c+d)}-\frac {(c-d) \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

input
Int[(a + a*Sec[e + f*x])^(3/2)/(c + d*Sec[e + f*x])^2,x]
 
output
-((a^3*(((-4*(c + d)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]])/(Sqrt[a]*c 
) - (2*(c^2 - 3*c*d - 2*d^2)*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(S 
qrt[a]*Sqrt[c + d])])/(Sqrt[a]*c*Sqrt[d]*Sqrt[c + d]))/(2*c*(c + d)) - ((c 
 - d)*Sqrt[a - a*Sec[e + f*x]])/(a*c*(c + d)*(c + d*Sec[e + f*x])))*Tan[e 
+ f*x])/(f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]))
 

3.2.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4428
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[a^2*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e 
 + f*x]]*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(a + b*x)^(m - 1/2)*((c + d 
*x)^n/(x*Sqrt[a - b*x])), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, 
 f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0 
] && IntegerQ[m - 1/2]
 
3.2.58.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(25447\) vs. \(2(199)=398\).

Time = 15.93 (sec) , antiderivative size = 25448, normalized size of antiderivative = 111.13

method result size
default \(\text {Expression too large to display}\) \(25448\)

input
int((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^2,x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.2.58.5 Fricas [A] (verification not implemented)

Time = 4.13 (sec) , antiderivative size = 1640, normalized size of antiderivative = 7.16 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^2,x, algorithm="fricas")
 
output
[1/2*(2*(a*c^2 - a*c*d)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + 
e)*sin(f*x + e) - (a*c^2*d - 3*a*c*d^2 - 2*a*d^3 + (a*c^3 - 3*a*c^2*d - 2* 
a*c*d^2)*cos(f*x + e)^2 + (a*c^3 - 2*a*c^2*d - 5*a*c*d^2 - 2*a*d^3)*cos(f* 
x + e))*sqrt(-a/(c*d + d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt( 
(a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a* 
d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c 
 + d)*cos(f*x + e) + d)) + 2*(a*c*d + a*d^2 + (a*c^2 + a*c*d)*cos(f*x + e) 
^2 + (a*c^2 + 2*a*c*d + a*d^2)*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e 
)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin( 
f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4 + c^3*d)*f*cos(f 
*x + e)^2 + (c^4 + 2*c^3*d + c^2*d^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f 
), 1/2*(2*(a*c^2 - a*c*d)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x 
+ e)*sin(f*x + e) - 4*(a*c*d + a*d^2 + (a*c^2 + a*c*d)*cos(f*x + e)^2 + (a 
*c^2 + 2*a*c*d + a*d^2)*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) 
+ a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - (a*c^2*d - 3*a*c 
*d^2 - 2*a*d^3 + (a*c^3 - 3*a*c^2*d - 2*a*c*d^2)*cos(f*x + e)^2 + (a*c^3 - 
 2*a*c^2*d - 5*a*c*d^2 - 2*a*d^3)*cos(f*x + e))*sqrt(-a/(c*d + d^2))*log(( 
2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e)) 
*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a 
*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/((c^4...
 
3.2.58.6 Sympy [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\int \frac {\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}{\left (c + d \sec {\left (e + f x \right )}\right )^{2}}\, dx \]

input
integrate((a+a*sec(f*x+e))**(3/2)/(c+d*sec(f*x+e))**2,x)
 
output
Integral((a*(sec(e + f*x) + 1))**(3/2)/(c + d*sec(e + f*x))**2, x)
 
3.2.58.7 Maxima [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^2,x, algorithm="maxima")
 
output
Timed out
 
3.2.58.8 Giac [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\int { \frac {{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (d \sec \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^2,x, algorithm="giac")
 
output
sage0*x
 
3.2.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^2} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{{\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )}^2} \,d x \]

input
int((a + a/cos(e + f*x))^(3/2)/(c + d/cos(e + f*x))^2,x)
 
output
int((a + a/cos(e + f*x))^(3/2)/(c + d/cos(e + f*x))^2, x)